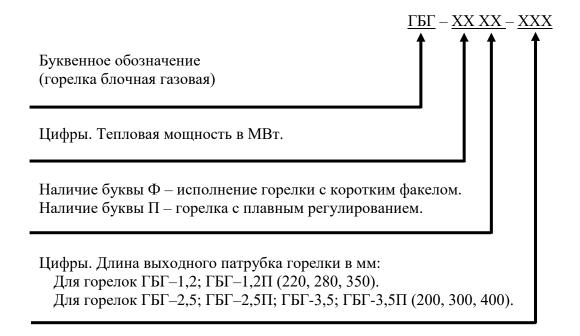
ОАО «Брестсельмаш»

ГОРЕЛКИ БЛОЧНЫЕ ГАЗОВЫЕ ГБГ–1,2; ГБГ–2,5; ГБГ-3,5 ГБГ–1,2П; ГБГ–2,5П; ГБГ-3,5П

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ГБГ-1,2.00.00.000 РЭ

Введение

Настоящее Руководство по эксплуатации содержит сведения по устройству, эксплуатации и обслуживанию горелок блочных газовых:


 $\Gamma \Box \Gamma - 1,2$; $\Gamma \Box \Gamma - 2,5$; $\Gamma \Box \Gamma - 1,2\Pi$; $\Gamma \Box \Gamma - 2,5\Pi$; $\Gamma \Box \Gamma - 3,5$; $\Gamma \Box \Gamma - 3,5\Pi$.

Дополнительно следует руководствоваться приложенными документами на комплектующие изделия.

Эксплуатацию горелки доверяйте лицам, обученным обращению с ней, изучившим настоящее руководство по эксплуатации.

К обслуживанию электрооборудования горелки допускайте лиц, имеющих допуск на эксплуатацию электроустановок с напряжением до 1000 В.

Структура условного обозначения горелок:

Пример обозначения горелки при заказе:

Исполнение горелки тепловой мощностью 1,2...1,6 МВт с длиной выходного патрубка горелки 220 мм, присоединительное давление газа 6кПа:

Горелка блочная газовая ГБГ-1,2-220, 6кПа.

То же для горелки с коротким факелом и плавным регулированием:

Горелка блочная газовая ГБГ-1,2ФП-220, 6кПа.

Исполнение горелки мощностью 3,5 MBт с плавным регулированием, коротким факелом, длиной выходного патрубка 300мм, присоединительное давление газа 30кПа:

Горелка блочная газовая ГБГ-3,5ФП-300, 30кПа.

Графический и пояснительный материал:

- Рисунок 1 Горелки блочные газовые ГБГ–1,2; ГБГ–2,5; ГБГ–1,2П; ГБГ–2,5П.
- Рисунок 1а Горелки блочные газовые ГБГ–3,5; ГБГ–3,5П.
- Рисунок 2 Характерные размеры.
- Рисунок 3 Схемы функциональные.
- Рисунок 4 Характеристики горелок.
- Рисунок 5 Схема электрическая принципиальная горелок ГБГ−1,2 и ГБГ−2,5 с устройством контроля герметичности VPS 504 S02.
- Рисунок 6 Схема электрическая принципиальная горелок ГБГ−1,2П и ГБГ−2,5П с устройством контроля герметичности VPS 504 S02.
- Рисунок 7 Схема электрическая принципиальная горелок ГБГ−1,2 и ГБГ−2,5 с устройством контроля герметичности DSLC px Vx.
- Рисунок 8 Схема электрическая принципиальная горелок ГБГ−1,2П и ГБГ−2,5П с устройством контроля герметичности DSLC px Vx.
- Рисунок 9 Схема электрическая принципиальная горелок ГБГ−3,5П с устройством контроля герметичности VPS 504.
- Рисунок 10 Схема электрическая принципиальная горелок ГБГ−3,5П с устройством контроля герметичности DSLC рх Vх.
- Рисунок 11 Схема подключения горелок к газоиспользующему агрегату.
- Рисунок 12 Схема подключения горелок плавного регулирования к газоиспользующему агрегату.
- Рисунок 13 Схема электрическая принципиальная блока управления A2.
- Рисунок 14 Диаграмма сигналов блока управления горелок ГБГ−1,2; ГБГ−2,5; ГБГ-3,5.

ПРИМЕЧАНИЕ: В конструкции горелки могут быть изменения, не отраженные в настоящем руководстве.

Оригинальность конструкции горелки ГБГ-1,2 подтверждена патентом BY 5313 U, МПК (2006) F23D 14/00, 2009.

Оригинальность конструкции горелки ГБГ-2,5 подтверждена патентом BY 5423 U, МПК (2006) F23D 14/00, 2009.

Описание и работа изделия

- 1.1 Горелки блочные газовые предназначены для сжигания, при соблюдении экологических требований, природного газа в топках газоиспользующих агрегатов соответствующей мощности.
- 1.2 Основные технические характеристики горелок приведены в таблице 1.

Таблица 1 – Основные технические характеристики горелок

Наименование	ГБГ–1,2	ГБГ-2,5	ГБГ–3,5	Средства
параметра	ГБГ–1,2П	ГБГ–2,5П	ГБГ–3,5П	измерения
1	2	3	4	5
Номинальная тепловая мощность, МВт (Гкал/час)	1,6 (1,38)	2,5 (2,15)	3,5 (3,02)	Расчетом по ГОСТ 29134–97
Число ступеней регулирования (% ном)	2 50/100	2 50/100	2 50/100	Расчетом по ГОСТ 29134–97
Диапазон регулирования тепловой мощности, МВт	0,5÷1,7	0,7÷2,8	0,9÷3,6	Расчетом по ГОСТ 29134–97
Вид топлива	Природі	ный газ ГОСТ 55	542-87	По сертификатам
Давление газа за основным запорным органом*, кПа	6÷36	18÷36	15÷36	Напоромер НП 10 кПа Манометр МПЗУ-0,1
Давление газа перед горелкой при номинальной тепловой мощности**, кПа	2,3 ^{+0,15}	$4^{+0,2}$	3,5+0,2	Напоромер НП 100 2,5 кПа Напоромер НП 100 10 кПа
Давление газа перед горелкой при минимальной тепловой мощности**, кПа	$0,2^{+0,05}$	$0,4^{+0,1}$	0,15 ^{+0,05}	Напоромер НП 100 2,5 кПа Напоромер НП 100 10 кПа
Давление воздуха пе-ред горелкой при но-минальной тепловой мощности**, кПа	1,6 ^{+0,15}	1,8 ^{+0,2}	1,3 ^{+0,1}	Напоромер НП 100 2,5 кПа
Давление воздуха пе-ред горелкой при ми-нимальной тепловой мощности**, кПа	$0.2^{+0.05}$	0,3 ^{+0,1}	0,15 ^{+0,05}	Напоромер НП 100 2,5 кПа
Диапазон давления в топке, Па	-20800	-20800	-20600	Тягонапоромер ТНП–52±1,25 кПа или напоромер НП 100 2,5 кПа
Минимальный ко- эффициент избытка воздуха при номи- нальной тепловой мощности, не более		1,1		Газоанализатор TESTO или ДАГ

Продолжение таблицы 1

1	2	3	4	5
Увеличение коэффициента избытка воздуха в диапазоне регулирования тепловой мощности, не более	0,2			Газоанализатор TESTO или ДАГ
Длина факела при номинальной тепловой мощности***, м, не более Исполнение Ф, м, не более	2,5 2	3,5 3	5 4	Расчетом по ГОСТ 29134–97
Потери тепла от химиче- ской неполноты сгорания, процент, не более		0,4		Газоанализатор TESTO или ДАГ
Содержание оксида углерода в продуктах сгорания на выходе из камеры горения установки в пересчете на сухие неразбавленные продукты сгорания (при α=1,0), не более	0,05			Газоанализатор TESTO или ДАГ
Концентрация NO_x в продуктах сгорания (при α =1,0), мг/м ³ , не более	для газоиспользующих установок согласно ГОСТ Р 50591-93			Газоанализатор TESTO или ДАГ
Время защитного отключения подачи газа при розжиге горелки, с, не более	3			Секундомер
Время защитного отключения подачи газа при погасании контролируемого пламени и отклонениях контролируемых параметров, с, не более	2		Секундомер	
Потребляемая электрическая мощность, кВт, не более	2,5	4,9	6,4	Комплект измерительный типа K-506
Напряжение электрической сети (фазное/линейное), В	220/380			Вольтметр 500В кл. т. 1,5
Допустимые отклонения, проценты	от +10 до минус 15			_
Удельный расход электро- энергии, кВт×ч/МВт×ч	1,7	1,8	1,8	Расчетом по ГОСТ 29134–97
Вероятность безотказной работы устройства контроля пламени за 2000 ч, не менее	0,92		Расчетом по ГОСТ 29134–97	
Средний срок службы, лет, не менее	6			Статистический метод
Масса горелки, кг, не более	110 120 150			Весы ГОСТ 29329–99

Продолжение таблицы 1

1	2	3	4	5
Габаритные размеры,				
мм, не более				Рулетка 3 м,
длина	1100	1200	1200	
ширина	1200	1300	1200	визуально
высота	650	650	700	
Расход газа при но- минальной мощности (при 760 мм рт. ст. и 20°С по ГОСТ 2939— 63), пм ³ /ч	172±10	268±13	380±20	Счетчики СГП-1 G100-DN50 СГ–16МТ–250
Расход газа в запальник, $\text{пм}^3/\text{ч}$	3 ⁺¹	10+2	3 ⁺¹	или подобные
Количество и диа- метр газовыпускных отверстий, мм:				
запальник	4 отв – ø 3,6	12 отв – ø 2,2	4 отв – ø 3,6	-
первый ряд	9 отв – ø 4,2	24 отв – ø 6,2	9 отв – ø 7	
второй ряд	12 отв – ø 9	21 отв − ø 3,5	12отв — 58x4	
третий ряд	12 отв – ø 9	_	3 отв – ø 9	

^{*} При заказе для исполнения горелки указывается конкретная величина.

1.3 Состав горелки блочной.

- 1.3.1 Горелка блочная (рисунок 1) состоит из следующих основных сборочных единиц:
 - вентилятора 1;
 - головки горелки 2;
 - рампы 3;
 - блока автоматики 4;
 - кабелей и жгутов коммутации.

Обозначения составных частей элементов:

- А1 сервомотор шибера воздухозаборника;
- А2 блок управления;
- A3 устройство контроля герметичности клапанов VPS504 или DSLC;
- А4 мультиблок рампы;
- А5 измеритель-регулятор (в комплекте горелки с плавным регулированием);
- BD1 электрод контроля пламени;
- FV1 электрод зажигания;
- КК1 реле электротепловое токовое;
- КМ1 пускатель электродвигателя;
- КМ 1.4 приставка контактная;
- KV1 реле промежуточное (в комплекте горелки с плавным регулированием);
- XT1 набор зажимов;
- ХТ2 набор зажимов (в комплекте горелки с плавным регулированием);
- $\Phi\Gamma$ фильтр газовый на Γ Б Γ -1,2; -2,5;
- QF1 выключатель автоматический трёхфазный;

^{**} Корректируется при адаптации горелки к газоиспользующему агрегату по тепловой мощности и анализу продуктов горения.

^{***} Выбор горелки рекомендуем согласовать с изготовителем.

- FV1 вставка плавкая;
- М1 электродвигатель вентилятора;
- SA1 переключатель режимов работы (РУЧН–ОТКЛ–АВТ);
- SA2 переключатель режимов работы (МО–БО или ↑Больше-↓Меньше);
- SP1 датчик-реле минимального давления воздуха;
- SP2 датчик-реле понижения давления газа (в составе A4);
- SP3 датчик-реле повышения давления газа перед головкой;
- SP4 датчик-реле устройства DSLC;
- SQ1 реле блокировки пуска при открытии (на $\Gamma Б\Gamma 2,5$; $\Gamma Б\Gamma 2,5\Pi$; $\Gamma Б\Gamma 3,5$; $\Gamma Б\Gamma 3,5\Pi$);
- TV1 трансформатор зажигания;
- YA1 электромагнитный клапан (в составе A4);
- YA2 электромагнитный клапан (в составе A4);
- YA3; YA4 клапаны запальника;
- ҮА5 орган утечки автоматический (нормально открытый клапан).
- 1.4 Устройство и работа горелки.
- 1.4.1 Вентилятор подает воздух в головку горелки с необходимым давлением и расходом; природный газ под воздействием давления в подводящем газопроводе через клапаны рампы поступает в головку горелки, где происходит его смешивание с воздухом. Зажигание газовоздушной смеси производится электрической искрой от трансформатора зажигания TV1 через электрод зажигания FV1, технологический процесс сжигания природного газа осуществляется факелом в топке газоиспользующего агрегата.
- 1.4.2 При замыкании цепи управления SA1 или внешним регулятором происходит пуск горелки. Закрывается YA5, производится тест герметичности газовых клапанов устройством A3; при положительном тесте включается вентилятор и A1 открывает шибер в положение БО. По окончании вентиляции топки A1 поворачивает шибер в положение МО, включается трансформатор зажигании TV1, открываются YA3 и YA4, разжигается запальник. При наличии пламени открывается YA1 и YA2 и горелка включается в работу в режиме МО. От релейного сигнала терморегулятора или SA2 производится двухступенчатое регулирование тепловой мощности МО–БО.

В горелках ГБГ $-1,2\Pi$, $-2,5\Pi$, $-3,5\Pi$ мощность регулируется плавно от дискретных сигналов регулятора A5 или тумблером SA2 на блоке автоматики путём изменения подачи воздуха A1 и подачи газа A4.

- 1.5 Описание и работа составных частей горелки.
- 1.5.1 Вентилятор 1 предназначен для подачи воздуха в головку горелки и состоит из корпуса, колеса, укрепленного на валу электродвигателя М1, воздухозаборника с шибером и сервомотором А1. Сервомотор имеет ограничители крайних положений, промежуточный выключатель и винт установки направления вращения. Корпус соединен с головкой шарниром (ГБГ–1,2) и крепится к ее фланцу болтами или укреплён на консоли 6 (ГБГ–2,5; ГБГ–3,5) и крепится к фланцу головки замком. На корпусе расположены блок автоматики 4 и дифференциальный датчик-реле давления SP1, «плюс» которого подсоединён гибкой трубкой к тройнику 5, а «минус» к штуцеру крепления воздухозаборника. Устройство А3 (VPS 504) крепится на рампе, DSLC на воздухозаборнике.
- 1.5.2 Головка горелки 2 предназначена для образования газовоздушной смеси, зажигания и стабилизации факела. Головка состоит из корпуса с фланцем и кольцевой газовой камерой 8 (ГБГ–2,5), имеющей на внутренней обечайке газовыпускные отверстия, над которыми расположено кольцо 9, патрубка 10. В головке расположен распределитель 11 с отбором давления 7 на мультиблок А4 (ГБГ–1,2; ГБГ–3,5), запальник 12, экран 13, электроды FV1 и BD1. Для регулирования скорости газовоздушной смеси в головке предусмотрена возможность перемещения

- экрана ГБГ-1,2-2,5 или патрубка 10 ГБГ-3,5 посредством винта 14 или гайки 15 (ГБГ-2,5). Для визуального контроля давления газа и воздуха на кронштейне установлены напоромеры 16. Для исполнения горелок с коротким факелом в патрубке 10 установлен завихритель 17.
- 1.5.3 Рампа предназначена для регулирования выходного давления газа пропорционально изменению давления воздуха в головке горелки, стабилизации выходного давления газа при изменениях входного давления, автоматического открытия подачи газа по релейному сигналу от A2 и автоматического отключения подачи газа при блокировках горелки.

На рампе установлены: кран, фильтр газовый, мультиблок A4, содержащий клапанрегулятор YA1, запорный клапан YA2 и нормально открытый клапан YA5, подключённый посредством адаптера к полости между YA1 и YA2. На отводе газа к запальнику горелки установлены клапаны YA3 и YA4. На входе в блок A4 подключено реле SP2 и на выходе SP3. Блок A4 имеет штуцеры для подключения трубок подачи выходного давления газа и давления воздуха для стабилизации и регулирования выходного давления газа. Блок A4 снабжен регулятором, содержащим винт N регулировки пускового расхода газа и винт V регулировки соотношения выходного давления газа к давлению воздуха. Винты выполнены под шестигранный ключ S 2,5 мм. Устройство A3 (VPS 504) монтируется на A4 и соединен с полостями до и после клапана YA1.

Устройство контроля герметичности VPS 504 функционирует следующим образом:

Встроенная помпа повышает давление между клапанами V1 и V2 на 2 кПа более давления перед V1. По истечении 26 с при отсутствии падения давления (герметичности клапанов) устройство дает разрешение на розжиг горелки – желтый светодиод; если повышение давления не произошло (клапана не герметичны), пуск горелки блокируется – красный светодиод.

1.5.4 Блок автоматики 4 предназначен для дистанционного управления горелкой от внешних дискретных сигналов, программного розжига и блокировок. Блок автоматики содержит блок A2, пускатель КМ1 с электротепловым реле КК1 и контактной приставкой КМ 1.4, переключатель SA1, тумблер SA2, реле КV1, блоки зажимов XT1; XT2, вставку плавкую FU1. На передней панели расположены светодиоды СЕТЬ, МО, БО; АВАРИЯ, ОБЩ, ГА3, ВОЗДУХ, кнопка сброса блокировки. При нажатии кнопки блок A2 допускает розжиг после энергонезависимого отключения горелки. Входные и выходные сигналы блока A2 показаны на рисунке 14.

При включении QF1 напряжение с контакта 3 A2 через КМ1.4 поступает на контакт 21 с него на A1, который поворачивает шибер в закрытое положение, горелка в режиме «Ожидание». Управление режимами работы горелки производится по месту SA2 при установке SA1 в положение РУЧН. или дистанционно релейными сигналами от регулятора A5 при установке SA1 в положение ABT.

Защитное выключение (блокировка) горелки происходит в следующих случаях:

- при недопустимых отклонениях контролируемых параметров газоиспользующего агрегата;
- при погасании контролируемого пламени;
- при понижении давления газа за основным запорным органом более чем на 30% номинального;
- при повышении давления газа перед головкой более чем на 30% от номинального значения.

Устройство контроля герметичности клапанов DSLC функционирует следующим образом:

При разомкнутых контактах SP4 (давления между клапанами YA1 и YA2 нет), вероятно, YA1 герметичен, а клапан YA2 допускает пропуск газа. А3 открывает на 1 с клапан YA1 для подачи газа в полость между клапанами. По истечении 60 с анализирует состояние контактов SP4; если контакты замкнуты (давление газа есть), клапан YA2 герметичен и A3 дает разрешение на пуск горелки – светодиод ОК; если контакты разомкнуты (давления газа нет), клапан YA2 не герметичен и пуск горелки блокируется – светодиод V2.

При замкнутых контактах SP4, вероятно, клапан YA2 герметичен, а клапан YA1 допускает пропуск газа; A3 открывает на 1 с клапан YA2 для сбора давления перед ним и по истечении 60 с анализирует состояние контактов SP4; если контакты разомкнуты (давления газа нет), клапан YA1 герметичен и A3 дает разрешение на пуск горелки – светодиод ОК; если контакты замкнуты (есть давление газа), клапан YA1 не герметичен и пуск горелки блокируется – светодиод V1.

1.5.5 Термостат или измеритель-регулятор А5 предназначен для двухпозиционного или плавного регулирования тепловой мощности горелки по заданному значению температуры теплоносителя газоиспользующего агрегата. А5 монтируется на приборной панели агрегата и функционирует от сигнала теплопреобразователя.

В горелках с плавным регулированием мощности после пуска горелки KV1 переключает управление A1 непосредственно на A5. В зависимости от значения и скорости изменения температуры теплоносителя A5 выдает дискретные сигналы определяемой им продолжительности на A1. При повороте шибера посредством A1, мультиблок A4 регулирует выходное давление газа пропорционально давлению воздуха и происходит изменение тепловой мощности горелки. При установке SA1 в положение РУЧ. Мощность плавно увеличивается или уменьшается воздействием на тумблер SA2.

2 Использование по назначению

- 2.1 Эксплуатационные ограничения.
- 2.1.1 Горелку эксплуатируйте в закрытом помещении при температуре воздуха от минус 15 до плюс 40°С и относительной влажности до 80%. Допускается эксплуатация под навесом, защищающим от осадков и солнечной радиации.
- 2.1.2 На подводящем газопроводе устанавливайте фильтр.
- 2.1.3 Регулирование сервомотора A1, проверку блока A2, установку значений на измерителе-регутяторе A5 доверяйте квалифицированному специалисту.
- 2.1.4 Присоединительное давление газа не должно превышать 36 кПа. При испытании подводящего газопровода на прочность отключайте газовую рампу горелки.
- 2.2 Подготовка горелки к использованию.
- 2.2.1 Меры безопасности.

ЗАПРЕЩАЕТСЯ:

- подсоединять к рампе горелки не продутый подводящий газопровод;
- допускать к работе необученный персонал;
- блокировать реле цепей блокировок установкой перемычки 0–N на A2, 10–N на XT1;
- дублировать функции блока автоматики монтажом дополнительных электроцепей;
- эксплуатировать горелку при наличии утечки газа в соединениях рампы газовой;
- выявлять огнем утечки газа в соединениях рампы газовой;
- производить ремонт на работающей горелке.

Работы, связанные с определением неисправностей электрооборудования, производите при отключенном напряжении.

Шкалу реле-блокировок установите на значения:

SP1 - 5.0 mbar;

- SP2 менее 70% присоединительного давления газа;
- SP3 30,0 mbar ($\Gamma B\Gamma$ 1,2); 80,0 mbar ($\Gamma B\Gamma$ 2,5); 65,0 mbar ($\Gamma B\Gamma$ 3,5).
 - 2.2.2 Монтируйте горелку к фланцу топки агрегата с применением несгораемого уплотнения. Для исключения термического повреждения передней крышки агрегата край патрубка горелки должен выступать в топку на 10...20 мм.
 - 2.2.3 Коммутируйте электроцепи к XT1 блока автоматики согласно схеме. Трехфазную электрическую сеть подключайте через автоматический выключатель. Блок автоматик заземлите многожильным медным проводом с площадью поперечного сечения не менее 1,5 мм².

Для регулирования температуры воды или воздуха возможно применение регулятора MT2141 ОДО «Микротерм», г. Минск. Для плавного регулирования возможно применение регулятора «Сосна-003М»

Для регулирования давления пара возможно применение электроконтактного манометра ЭкМ100.

2.2.4 Выполнение операции по подготовке к использованию агрегата. Установите на измерителе-регуляторе (термостате) нужное значение температуры.

На регуляторе А5 горелок с плавным регулированием тепловой мощности установите следующие параметры:

- Func 100P; ALGr ndd; Gi5t 1; dt-14; bi 2; bP 3; dA 0.5; tALL 300; 5tO 2; tOL 0; tOH 400; Lt 10; Ht 300; 5PEd 9600; Addr 01.
 - 2.2.5 Установите положение винтов на мультиблоке А4:
 - на $\Gamma B\Gamma 1,2$ «N» от минус 1 до минус 0,6; «V» от плюс 1,3 до плюс 1,6;
 - на $\Gamma Б\Gamma 2.5$ «N» от минус 1 до минус 0.5; «V» от плюс 2 до плюс 2,6;
 - на ГБГ−3,5 «N» от минус 1,1 до минус 0,9; «V» от плюс 2,4 до плюс 2,9.

Уточните положение экрана в головке по размеру на рис.2 для ГБГ-1,2 и ГБГ-2,5 и положение патрубка по шкале согласно таблицы 2.

Таблица 2 – Положение экрана и патрубка в головке.

Морко горонки	В зависимости от давления в топке L, мм, шкала			
Марка горелки	-20+200 Па	+200+500 Па	+500+800 Па	
ГБГ–1,2	128	85	53	
ГБГ-2,5-200	410	420	430	
ГБГ-2,5-300	510	520	530	
ГБГ-2,5-400	610	620	630	
ГБГ-3,5	1	2	3	

- 2.2.6 Откройте кран на подводящем газопроводе и заполните газопровод газом. Откройте кран на рампе, убедитесь в нормальном присоединительном давлении.
- 2.3 Использование горелки.
- 2.3.1 Включите QF1, загорится светодиод СЕТЬ. Установите SA1 в положении ABT. При подаче напряжения от A5 на конт. 6 XT1 оно поступает на A3, который про- изводит тест герметичности затворов A4. При положительном результате на A3 индикация ОК, напряжение поступает на конт. 9 A2, горелка включается в режим БО (смотри рисунок 11 и 5). При подаче напряжения от A5 на конт. 7 XT1, далее на конт. 13 A2 горелка включается в режим МО; при снятии напряжения с конт. 9 A2 горелка отключается. Функционирование сопровождается индикацией на A2.

В горелках с плавным регулированием мощности А5 подает дискретные сигналы на А1, который открывает или закрывает шибер, одновременно А4 увеличивает или уменьшает подачу газа пропорционально давлению воздуха.

При установке SA1 в положение РУЧ мощность горелки регулируется тумблером SA2.

Пуск не произойдёт при наличии случаев, перечисленных в п.1.5.4.

2.3.2 При использовании горелки визуального контролируйте соотношение «газвоздух». Пламя должно быть прозрачным с голубым оттенком. Насыщенный голубой цвет пламени свидетельствует о присутствии окиси углерода (недожога) в продуктах сгорания. По возможности применяйте газоанализатор. Корректируйте соотношение газ-воздух винтом «V» на мультиблоке A4 в случае технологической необходимости.

Регулирование подачи воздуха на сервомоторе BELIMO (смотри рисунок 2).

На работающей горелке в режиме МО подачу воздуха уменьшайте медленым поворотом винта 4 против часовой стрелки; для увеличения подачи воздуха нажмите кнопку 3 и, придерживая ось поворота, медленно поверните винт 4 по часовой стрелке, установите рукой ось поворота в прогнозируемое положение, отпустите кнопку 3.

На работающей горелке в режиме БО подачу воздуха увеличивайте перемещением ограничителя 2 вверх, ослабляя винт фиксации; для уменьшения подачи воздуха нажмите кнопку 3, переместите ограничитель 2 вниз, ориентируясь на прогнозируемое положение шибера, зафиксируйте ограничитель и отпустите кнопку 3.

- 2.3.3 При блокировке горелки с индикацией АВАРИЯ ОБЩ определите причину. Датчики контролируемых параметров газоиспользующего агрегата проверяйте наличием цепи с контакта 10 XT1 на конт. 4. Отключайте горелку при недопустимых отклонениях контролируемых параметров агрегата. При отключении горелки закройте кран на газовой рампе, выключите QF1.
- 2.3.4 Перечень возможных неисправностей при использовании горелки и рекомендации по их устранению приведены в таблице 3.

Таблица 3 – Перечень возможных неисправностей при использовании горелки и рекомендации по их устранению

дации по их устранен	ию	T	
Неисправность. Внешние	Вероятная причина	Метод устранения	Рекомендуемый инструмент
проявления	-		1.0
1 11	2	3	4
1 Не проходит тест на герметичность. На А3 индикация V1 или V2	Попадание пыли в клапаны A4	Нажмите кнопку СБРОС. Повторите ПУСК. При повторении ситуации обратитесь к специалисту	Отвертка, мульти- метр
	Попадание окалины в затвор клапана YA5	Разберите и прочистите	Комплект инструмента
2 Нет розжига после вентиляции, на A2 индикация АВАРИЯ ОБЩ	Отсутствует искра на FV1	Проверьте цепь соединения FV1 и TV1, установку FV1 по рисунку 1	Отвертка, мультиметр
	Замыкание BD1 на корпус	Контакт 18 A2 на N не должен звонить-	Мультиметр
	Не поступает газ через клапаны	Проверьте наличие напряжения на контактах 5 и 6 блока A2	Отвертка, мультиметр
	Разомкнута цепь блокировок по контролируемым параметрам газоиспользующего агрегата Электромагнитные помехи в кабеле ВD1 от работы TV1	Проверьте цепь блокировок. Найдите и устраните причину размыкания Кабель BD1 удалите от TV1 и кабеля FV1	Мультиметр, отвертка
3 После вентиляции топки А1не закрывает шибер в МО	Неисправная при- ставка КМ1.4	После вентиляции замерьте напряжение на конт. 23 A2, при отсутствии замените КМ1.4	Отвертка, мультиметр
4 Не происходит вентиляция топки. На А2 индикация АВАРИЯ ОБЩ	Неисправность бло- ка A2	Проверьте наличие напряжение на контактах 3, 9, 7, 1 блока A2. При отсутствии напряжения на контактах 7, 1 замените блок A2	Мультиметр
5 Пульсирующее пламя	Недостаточная подача газа	Увеличьте подачу газа винтом «V» мультиблока А4	Шестигранник 2,5

Продолжение таблицы 3

1	2	3	4
6 При розжиге пла- мя появляется и	Большая подача воздуха	Уменьшите подачу воздуха на A1	Отвертка
гаснет, на А2 инди- кация АВАРИЯ ОБЩ	Недостаточная подача газа	Увеличьте подачу газа регулятором YA3	Шестигранник 6
	Неправильное положение BD1 или нарушена цепь BD1	Установите BD1 согласно рисунка 2. Ток ионизации должен быть не менее 6 мкА	Мультиметр
7 Горелка не блокируется по контроли-	Неисправен датчик	Проверьте и замените	Мультиметр
руемому параметру агрегата	Установлена перемычка в электроцепи агрегата	Найдите и уберите	Отвертка
8 Горелка не функ- ционирует, на А2	Сгорел FU1	Определите причину. Замените FU1	Мультиметр, ЗИП
индикация СЕТЬ	Неисправен А2	В отключенном состоянии контакты 7–9 должны «звониться». При включении на контакте 7 должно быть напряжение 220 В. Замените А2	Мультиметр

3 Техническое обслуживание

3.1 Общие указания.

Техническое обслуживание горелки доверяйте обученному персоналу.

При использовании горелки производите следующие виды технического обслуживания:

- TO–1, выполняемое через 650...750 часов использования горелки, трудоемкость 0,75 чел. час или ежемесячно.
- TO–2, выполняемое через 5000...6000 часов использования горелки, трудоемкость 1,5 чел. час или перед началом отопительного сезона.
- 3.2 Порядок технического обслуживания горелки приведен в таблице 4.

Таблица 4 – Порядок технического обслуживания горелки

Содержание работ	Технические требования	Приборы и приспособления	Примечания
1	2	3	4
	TO-1		
1 Проверьте герметичность соединений рампы газовой	Отсутствие утечек	Индикатор или мыльная эмульсия	Визуально
2 Проверьте отключение подачи газа при погасании контролируемого пламени путем отсоединения провода 18 с контакта блока A2	Убедитесь в появлении пламени и его погасании. Индикация на A2 АВАРИЯ ОБЩ	Отвертка	Визуально. При включенной го- релке на контакте 18 напряжение 220В
3 Проверьте действие блокировок горелки, в том числе по контролируемым параметрам агрегата	Горелка должна блокироваться при установке шкалы реле SP1 и SP2 ниже, реле SP3 выше значений в п.2.2.1	Отвертка, мульти- метр	_
	TO-2		
1 Проверьте надежность заземления	Сопротивление между металлической нетоковедущей частью и зажимом заземления не более 0,1 Ом	Мультиметр	_
2 Проверьте соблюдение экологических требований к сжиганию газа, если производились изменения в технологии сжигания газа	Параметры должны соответствовать таблице 1	Газоанализатор типа ТЕЅТО или ДАГ	При неизменной технологии проверку производите 1 раз в три года

Продолжение таблицы 4

1	2	3	4
3 Проверьте функцио-	Отверните винт внизу	Отвертка	
нирование устройства	прибора. При тестиро-		
A3	вании блокировка с		
	индикацией на А3.		_
	Красный светодиод.		
	Заверните винт		
4 Почистите фильтр	Отсутствие загрязне-	Комплект инстру-	Разобрать и про-
перед рампой газовой	ния	мента	дуть воздухом
или мультиблоком			
5 Почистите фильтр	Отсутствие загрязне-	Комплект инстру-	Разобрать и про-
мультиблока	ния	мента	дуть воздухом

4 Транспортировка и хранение

- 4.1 Горелку транспортируйте в упаковке предприятия-изготовителя автомобильным или железнодорожным транспортом в соответствии с правилами перевозки грузов.
- 4.2 Горелки храните в закрытом помещении при температуре воздуха от минус 30 до плюс 50°С и относительной влажности от 30 до 80%.
- 4.3 При хранении горелок обеспечьте их сохранность и комплектность.

При хранении горелки на месте использования:

- отключите напряжение с блока автоматики;
- закройте кран на газовой рампе, откройте свечу на газопроводе;
- обеспечьте сохранность сборочных единиц;
- закрывайте горелку полиэтиленовой пленкой или другим подобным материалом для предотвращения загрязнений.

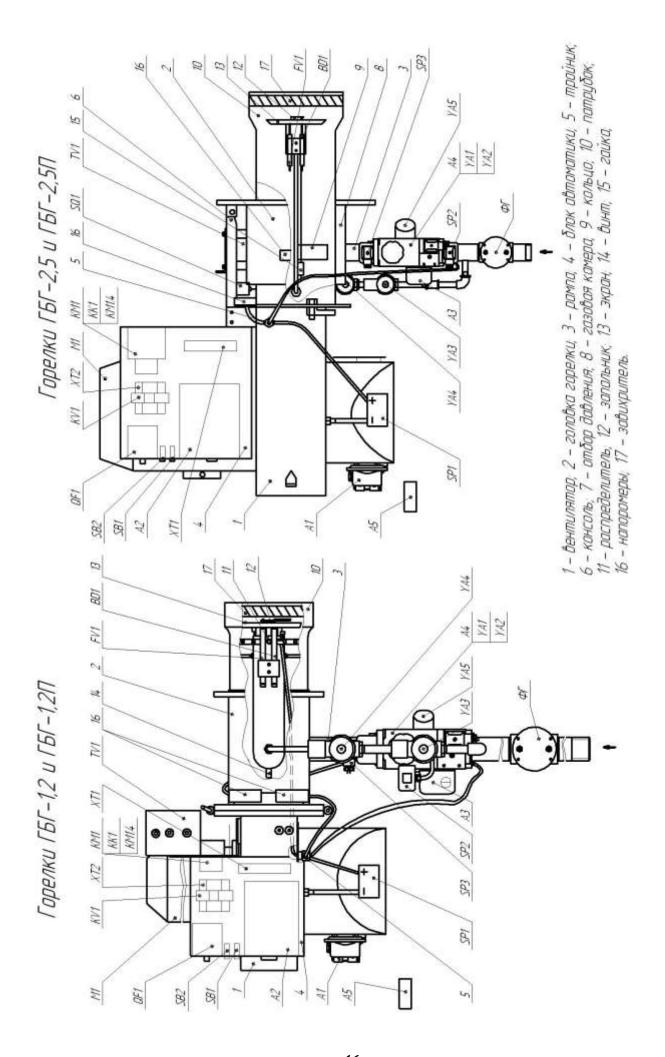


Рисунок 1 — Горелки блочные газовые ГБГ-1,2; ГБГ-2,5; ГБГ-1,2П; ГБГ-2,5П

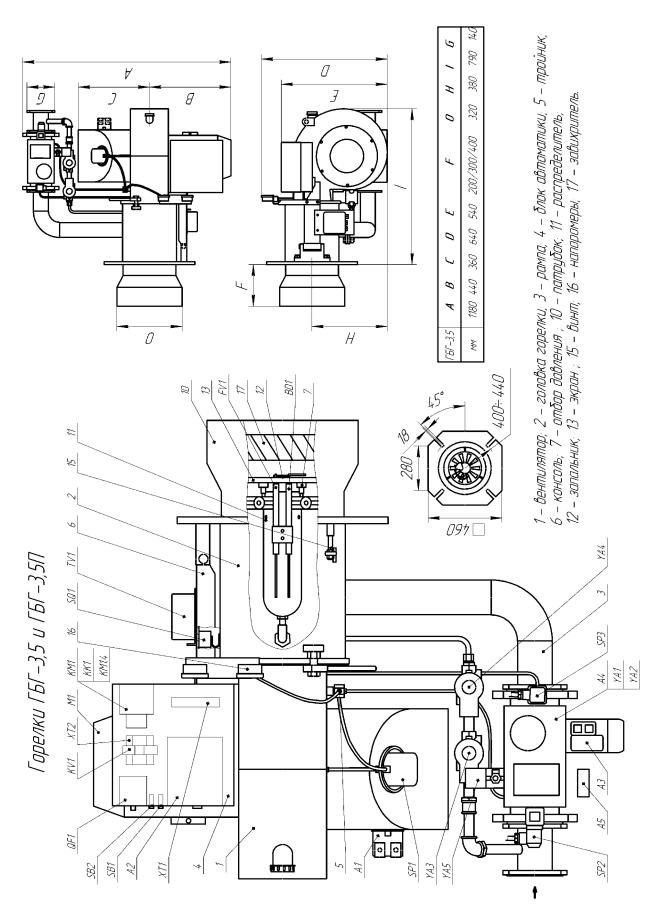


Рисунок $1a - \Gamma$ орелки блочные газовые $\Gamma B\Gamma - 3.5$; $\Gamma B\Gamma - 3.5\Pi$

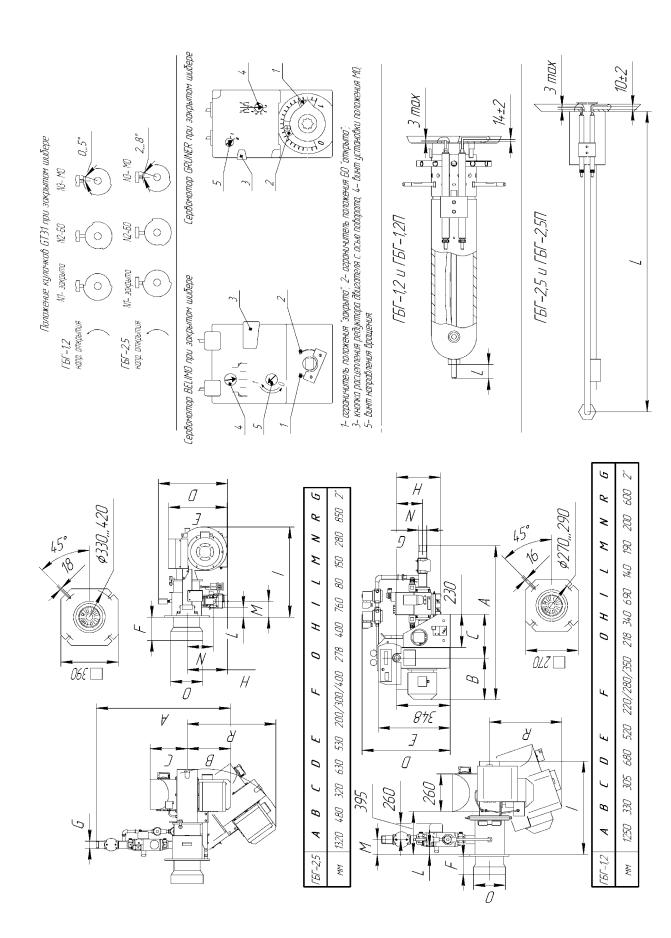


Рисунок 2 – Характерные размеры

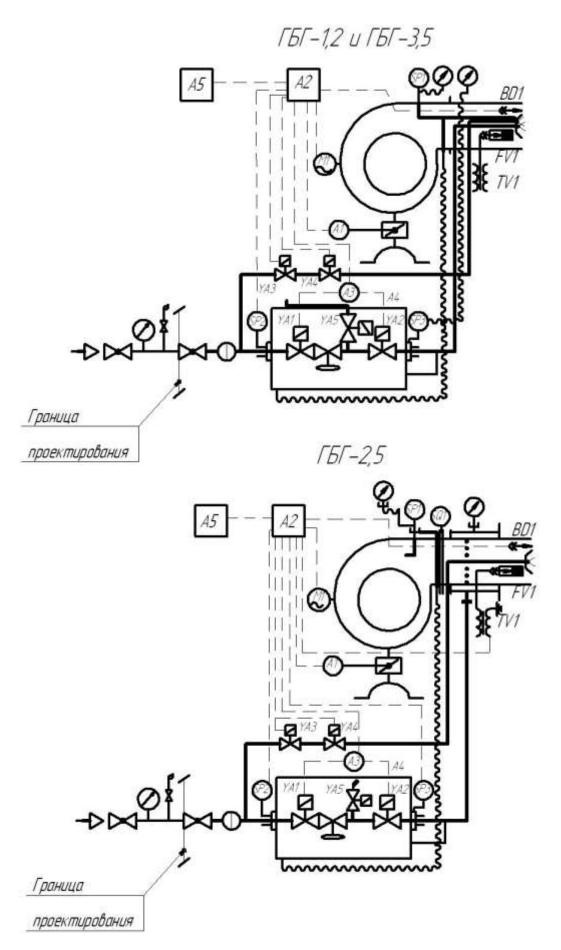
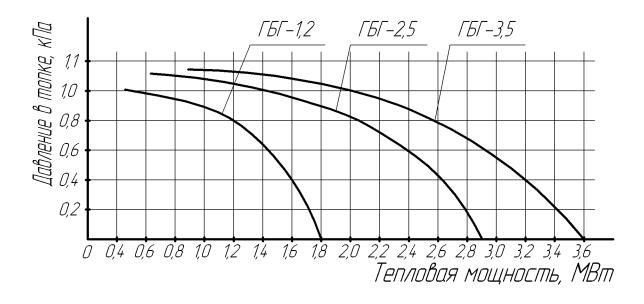



Рисунок 3 – Схемы функциональные

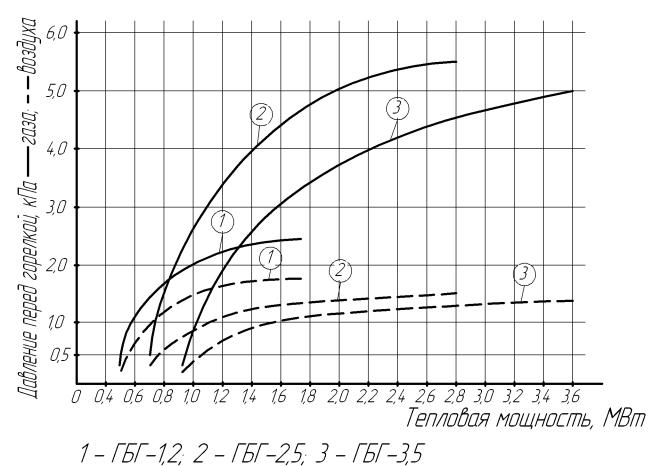
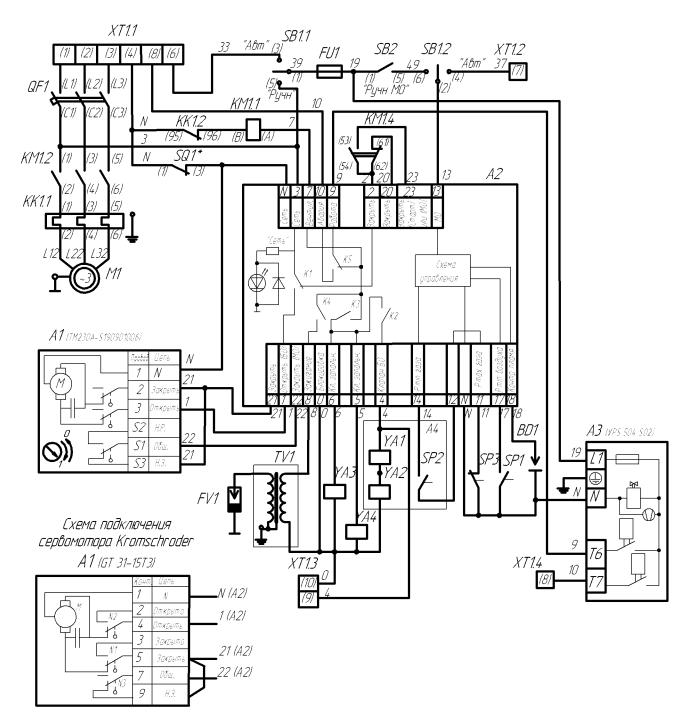
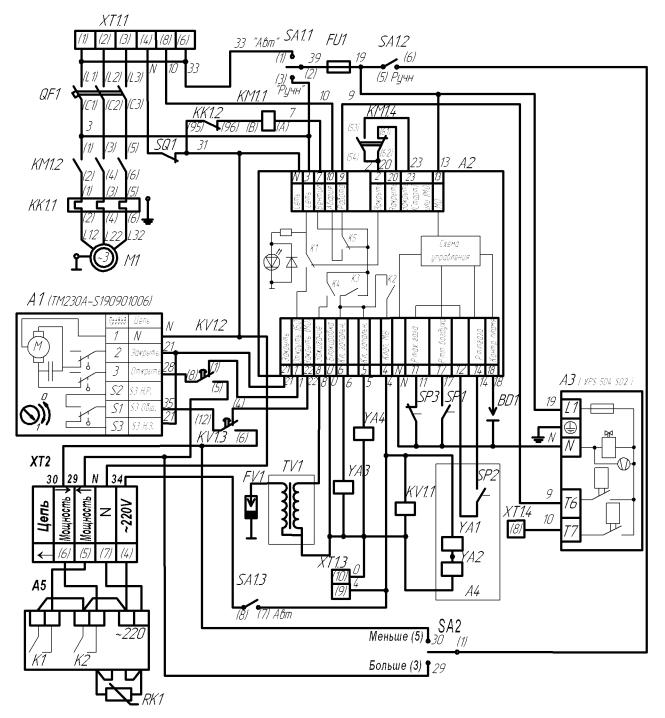




Рисунок 4 – Характеристики горелок

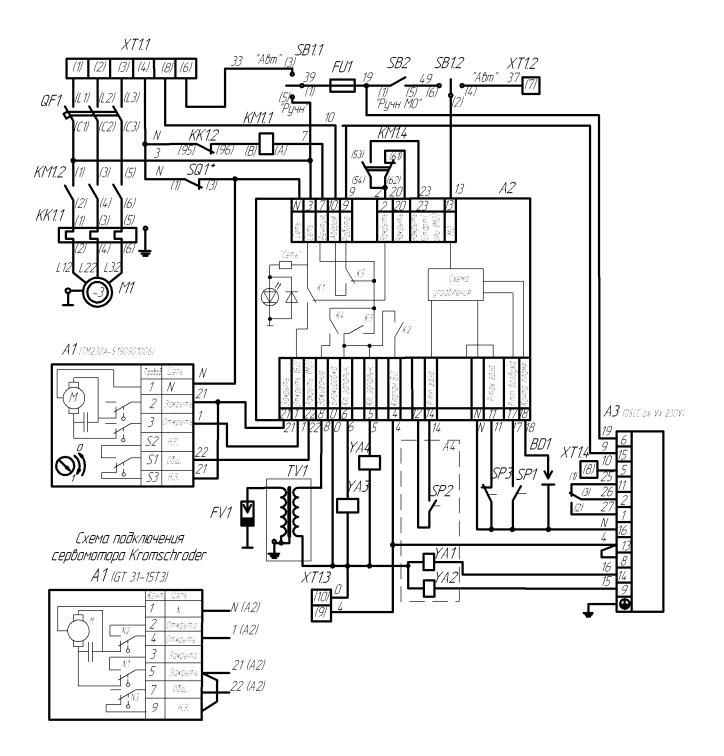

- 1. В скобках изображена заводская маркировка выводов электроэлементов.
- 2. *Микропереключатель SQ1 установлен только на горелке ГБГ-2,5.

Рисунок 5 — Схема электрическая принципиальная горелок ГБГ—1,2 и ГБГ—2,5 с устройством контроля герметичности VPS 504 S02

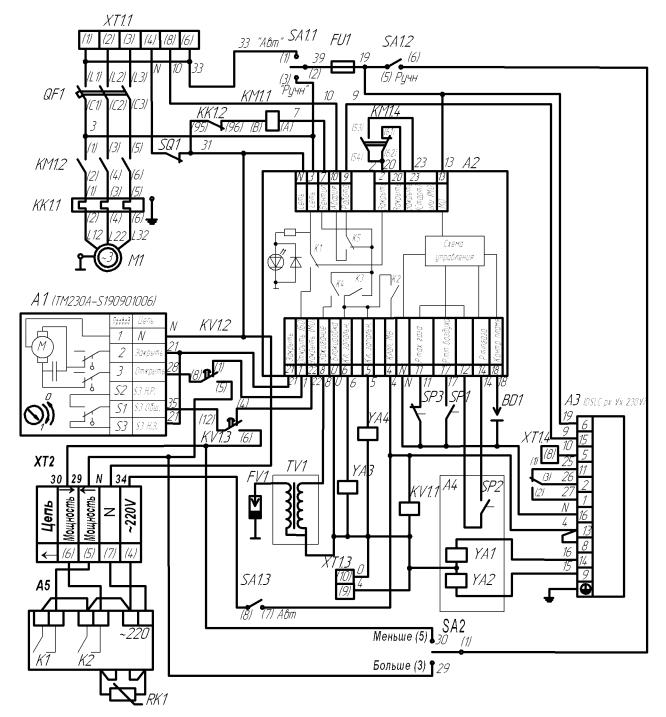

1. В скобках изображена заводская маркировка выводов электроэлементов. 2. *Микропереключатель SQ1 установлен только на горелке ГБГ-2,5.

Рисунок 6 — Схема электрическая принципиальная горелок ГБГ $-1,2\Pi$ и ГБГ $-2,5\Pi$ с устройством контроля герметичности VPS 504 S02

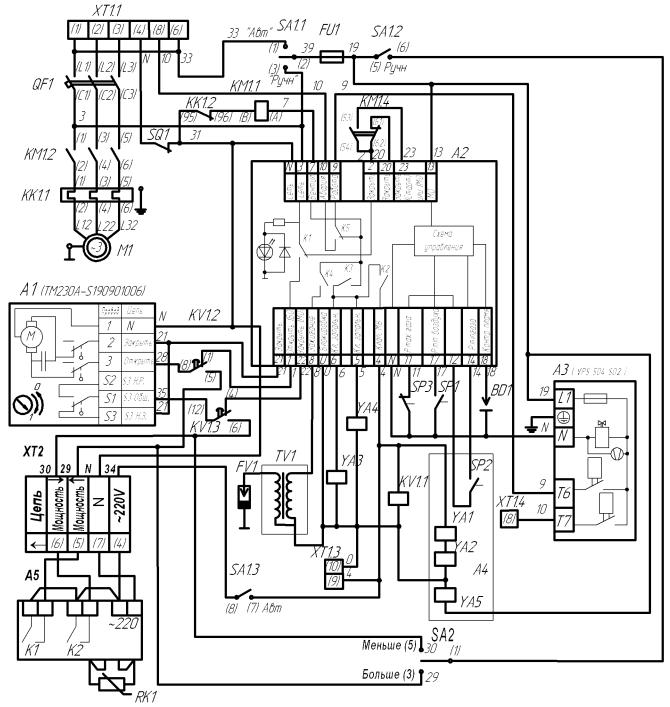

1. В скобках изображена заводская маркировка выводов электроэлементов. 2. *Микропереключатель SQ1 установлен только на горелке ГБГ-2,5.

Рисунок 7 — Схема электрическая принципиальная горелок ГБГ—1,2 и ГБГ—2,5 с устройством контроля герметичности DSLC px Vx

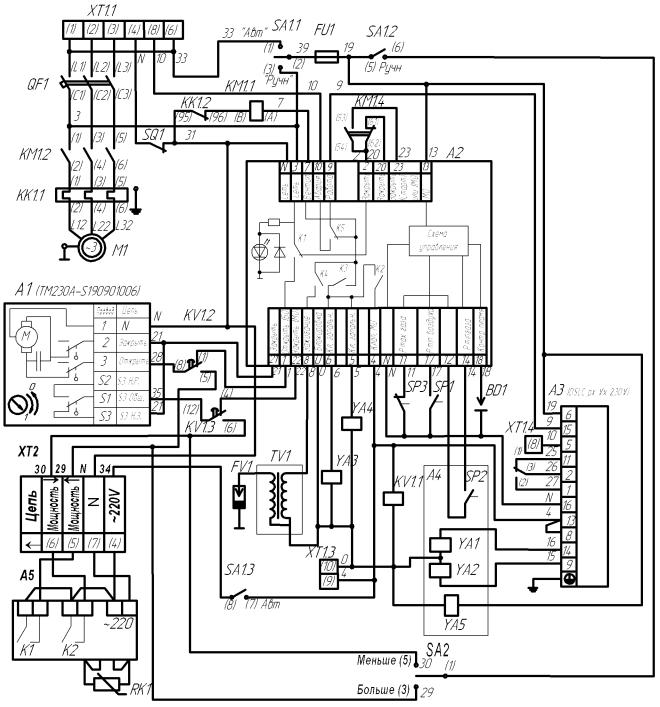

1. В скобках изображена заводская маркировка выводов электроэлементов. 2. *Микропереключатель SQ1 установлен только на горелке ГБГ-2,5.

Рисунок 8 — Схема электрическая принципиальная горелок ГБГ $-1,2\Pi$ и ГБГ $-2,5\Pi$ с устройством контроля герметичности DSLC рх Vх

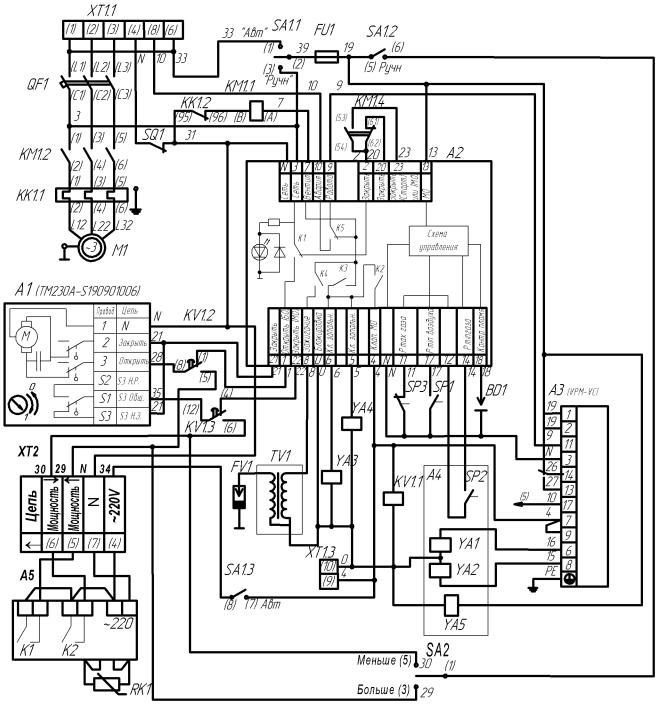
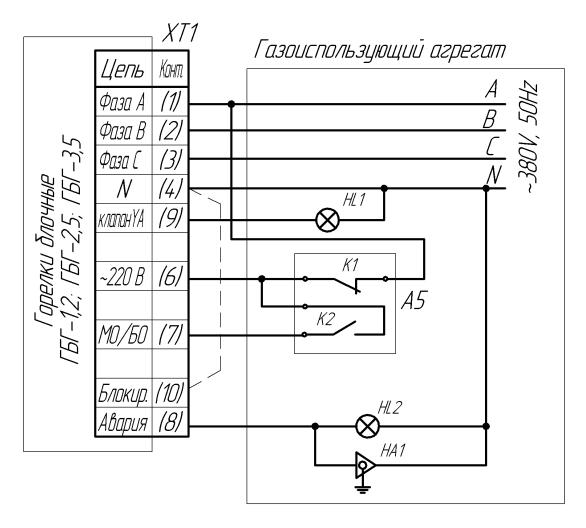

1. В скобках изображена заводская маркировка выводов электроэлементов.

Рисунок 9 — Схема электрическая принципиальная горелки ГБГ—3,5П с устройством контроля герметичности VPS 504 S02

1. В скобках изображена заводская маркировка выводов электроэлементов.

Рисунок 10 — Схема электрическая принципиальная горелки ГБГ—3,5П с устройством контроля герметичности DSLC px Vx



1. В скобках изображена заводская маркировка выводов электроэлементов.

Рисунок 10.1 – Схема электрическая принципиальная горелки ГБГ–3,5П с устройством контроля герметичности VPM-VC DUNGS

Перечень элементов к схеме электрической принципиальной (× Возможные варианты комплектации)

Поз. Обознач.	Наименование	Кол.	Примечание			
1	2	3	4			
	Сервомотор					
	TM 230–AS190901006; 15 c; BELIMO	1	_			
A1	227SZ-230-05-S1; 20 c; GRUNER	×	_			
	GT31–15T3; 15 c; KROMSCHRODER	×	_			
A2	Блок управления ГБЖ-0,8.04.03.000-03	1	_			
	Устройство контроля герметичности VPS504 S02	1	_			
A3	Устройство контроля герметичности DSLC pxVx 230V	×	_			
A4(YA1; YA2)	Мультиблок MB VEF 425B01S30 (или S32) фирмы DUNGS	1	ГБГ-1,2; ГБГ-2,5			
A4(YA1; YA2)	Мультиблок MBC-1900 VEF-65 фирмы DUNGS	1	ГБГ-3,5; ГБГ-3,5П			
4.7	Измеритель-регулятор «Сосна-003М»/ТС1	1	ГБГ–1,2П; ГБГ-2,5П			
A5	ТУ РБ 190055458.001-2001	1	ГБГ-3,5П			
BD1	Электрод контрольный	1	_			
FU1	Вставка плавкая ВПЗБ-1В; 2 А; АГО.481.304ТУ	1	_			
FV1	Электрод зажигания	1	_			
	Реле электротепловое токовое ТУ У 3.11–05814256–099–97					
	РТЛ-1010 0*4 (57) А	1	ГБГ–1,2; ГБГ–1,2П			
KK1	РТЛ-1014 0*4 (710) А	1	ГБГ-2,5; ГБГ-2,5П			
	РТЛ-1016 0*4 (1014) А	1	ГБГ-3,5; ГБГ-3,5П			
KM1	Пускатель ПМЛ 1100 0*4, 220 В	1				
IXIVII	ТУ У 3.11-05814256-097-97	1	_			
KM1.4	Приставка контактная ПКЛ–1104 ТУ У 3.11–05814256–098–97	1	_			
******	Реле промежуточное T-R4E-2014-23-5230 с розеткой GZT4 и		ГБГ–1,2П; ГБГ-2,5П			
KV1	скобой TR4-2000 RELPOL (Польша)	1	ГБГ–3,5П			
	Электродвигатель 380 В; 50 Гц; ТУ16–525.564–84		,			
	АИР80В2 УЗ IM3041 (IM3081) (P=2,2 кВт, 3000 мин ⁻¹)	1	ГБГ–1,2; ГБГ–1,2П			
M1	АИР100S2 УЗ IM3081 (Р=4,0 кВт, 3000 мин ⁻¹)	1	ГБГ-2,5; ГБГ-2,5П			
	АИР100L2 УЗ IM3081 (P=5,5 кВт, 3000 мин ⁻¹)	1	ГБГ-3,5; ГБГ-3,5П			
	Тумблер					
SA1	П2Т-1 АГО.360.406ТУ	1	ГБГ-1,2; -2,5; -3,5			
SAI	ПТ57–10–1 АГО.360.053ТУ	1	ГБГ–1,2П; -2,5П; -3,5П			
SA2	Т3-В ВРО.360.007ТУ	1	ГБГ-1,2; -2,5; -3,5			
SAZ	П2Т-5 АГО.360.406ТУ	1	ГБГ–1,2П; -2,5П; -3,5П			
	Датчик-реле давления фирмы DUNGS					
SP1	LGW 10 C2	1	ГБГ–1,2; -2,5; -3,5			
SP2; SP3	GW 150 A5	2	ГБГ–1,2			
SP2	GW 500 A5	1	ГБГ-2,5; ГБГ-3,5			
SP3	GW 150 A5	1	ГБГ-2,5; ГБГ-3,5			
SP4	GW 150 A5	1				
SQ1	Микропереключатель МП1101 Л УХЛ3.11А ТУ 16–526.329–78	1	ГБГ-2,5; -2,5П; -3,5; 3,5П			
TV1	Трансформатор ИВН-Тр ТУ 3113-005-87875767-2010	1	_			
	Трансформатор зажигания ОСЗЗ-730 УХЛ2 ТУ 203 УССР 59-87	×	_			
XT1	Клеммы проходные 2002-6301 WAGO	16	_			
XT2	Клеммы проходные 2002-6301 WAGO	4	ГБГ–1,2П; -2,5П; -3,5П			
QF1	Автоматический выключатель ВА 47–290; 16 А	1	_			
QI I	трехполюсный ТУ 2000 АГИЕ.641235.003					
	Клапан электромагнитный ТУ РБ 05708554.021		1			
YA3	BH1/2H-4	1	_			
YA4	BH1/2H-4K	1	-			
YA5	ВФ3/4Н–4	1	ГБГ-3,5			

Подключение трехфазной сети медным проводом не менее:

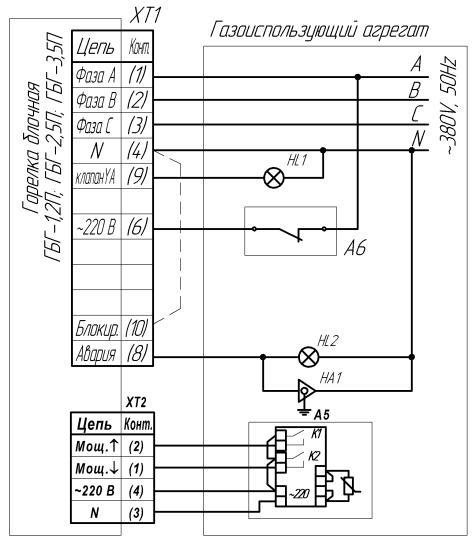
1,5 мм 2 – для горелок ГБГ–1,2 и 2,5 мм 2 – для горелок ГБГ–2,5.

НА1 – элемент звуковой сигнализации о неисправности.

HL2 — элемент световой сигнализации о неисправности.

HL1 – элемент световой сигнализации о работе.

XT1 – блок зажимов типа ЗНИ-4.


При отсутствии датчиков установить перемычку между контактами 4 и 10 разъема XT1.

А5 — измеритель—регулятор температуры с датчиками. Контакты реле измерителя—регулятора должны обеспечивать коммутацию тока не менее 2A переменного напряжения 220В.

При достижении нижней уставки температуры замыкается контакт К2 реле измерителя—регулятора и горелка переходит в режим МО. При достижении верхней уставки температуры размыкается контакт К1 реле измерителя—регулятора и горелка переходит в режим ожидания.

ВНИМАНИЕ! Элементы световой и звуковой сигнализации должны быть рассчи— таны на переменное. напряжение 220В и максимальный ток нагрузки не более 1А. В случае поставки горелки в составе агрегата топочного АТ—1,6 или АТ—2 необходимо руководствоваться схемой подключения АТ.

Рисунок 11 – Схема подключения горелок к газоиспользующему агрегату

Подключение трехфазной сети медным проводом не менее:

1,5 мм² – для горелок ГБГ–1,2 и 2,5 мм² – для горелок ГБГ–2,5.

НА1 – элемент звуковой сигнализации о неисправности.

HL2 – элемент световой сигнализации о неисправности.

HL1 – элемент световой сигнализации о работе.

XT1 – блок зажимов типа ЗНИ-4.

Перемычка 10–4 устанавливается при отсутствии датчиков в исключительных случаях

A5 – измеритель-регулятор температуры или давления с ПДД регулированием.

При замыкании контакта K2 реле измерителя происходит уменьшение мощности горелки, а при замыкании контакта K1 реле измерителя происходит увеличение мощности горелки.

A6 – датчик максимальной температуры или давления (или предельные параметры тепловырабатывающего агрегата) для отключения горелки или перевода в режим ожидания. Контакты реле измерителя и датчика должны обеспечивать коммутацию тока не менее 2 А переменного напряжения 220 В.

ВНИМАНИЕ! Элементы световой и звуковой сигнализации должны быть рассчи таны на переменное. напряжение 220В и максимальный ток нагрузки не более 1А. В случае поставки горелки в составе агрегата топочного АТ—1,6 или АТ—2 необходимо руководствоваться схемой подключения АТ.

Рисунок 12 – Схема подключения горелок плавного регулирования к газоиспользующему агрегату

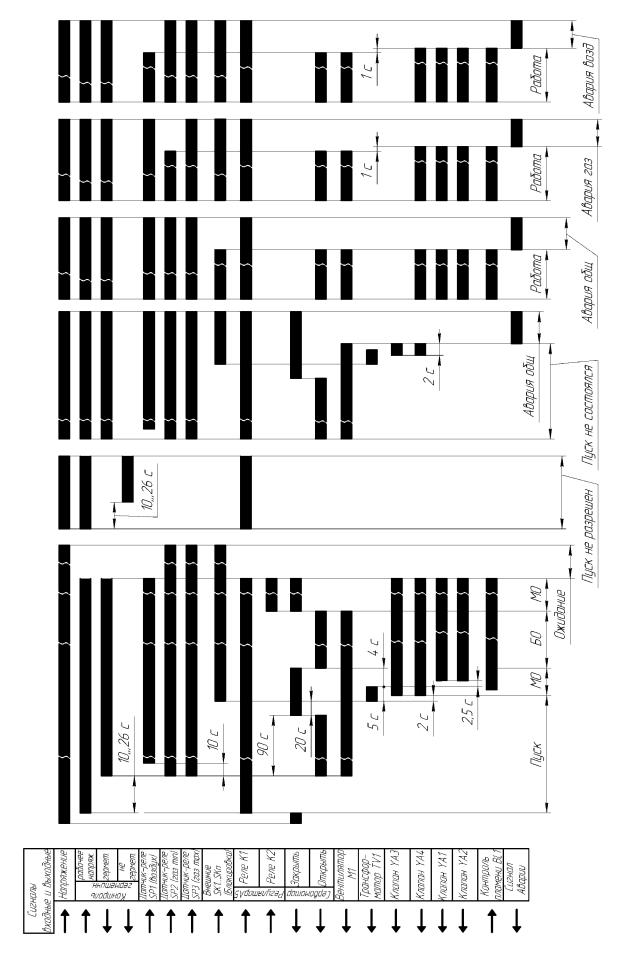


Рисунок 13 — Диаграмма сигналов блока управления горелок ГБГ-1,2; ГБГ-2,5; ГБГ-3,5